TUMKUR UNIVERSITY

Course Structure and Curriculum of B.Sc. Biotechnology (I and II Semester)

REVISED CBCS PATTERN

SEMESTER	DSC	Pattern of Teaching/Learning/Evaluation (hours/week)			Credits	Course Name
		L (Lecture)	T (Tutorial)	P (Practical)		
I Semester	DSC A1	4	0	0	4	Cell Biology and Genetics
	DSC A2	0	0	4	2	Practical's Based on Cell Biology and Genetics
II Semester	DSC A3	4	0	0	4	Microbiology
	DSC A4	0	0	4	2	Practical's Based on Microbiology

DSC: Discipline Specific Core

Page 1 of 1

MKUR UNIVERSIT

TUMKUR UNIVERSITY

Curriculum for B.Sc., BIOTECHNOLOGY

Revised CBCS PATTERN

I B.Sc., I SEMESTER

DSC A1: CELL BIOLOGY AND GENETICS

60 Hrs

Unit 1: Cell Structure, Organelles and Their Functions

15 Hrs

- 1.1 Cell as basic unit of living organisms-bacterial, fungal, algal, plant and animal cells. Cell Motility in prokaryotes and eukaryotes.
- 1.2 Ultrastructure of prokaryotic cell, structure and functions of cell wall and cell membrane and plasmids (pUC19 and pBR322), Nucleoid, ribosome, flagella, pili, capsule, endospores and their types.
- 1.3 Ultrastructure of eukaryotic cell plants, animals, protozoan, fungal and algal, Ultrastructure and functions of cell wall, cell membrane, single and double membrane bound organelles, cilia
- 1.4 Models of plasma membrane.
- 1.5 Structural organization of chromosomes Ultra structure, types, components of chromosomes (histones and non-histones), and Nucleosome model, folded-fibre model, Special types of chromosomes; Salivary gland and Lamp brush chromosomes,

Unit 2: Cell cycle

15 Hrs

- 2.1 Cell cycle and cell division (mitosis and meiosis)
- 2.2 Bacterial cell division
- 2.3 Fungal and Algal cell division
- 2.4 Cell Senescence and Programmed Cell Death.
- 2.5 Apoptosis

Unit 3: Principles and mechanism of inheritance

15 Hrs

- 3.1 Mendel's experiments- factors contributing to success of Mendel's experiments, Principles of inheritance
- 3.2 Law of segregation- Monohybrid Ratio; Law of independent assortment- dihybrids, trihybrids,
- 3.3 Interaction of genes (Supplementary factors; Comb pattern in fowls), Complementary genes (Flower colour in sweet peas), Epistasis: Plumage colour in poultry
- 3.4 Co-dominance and Incomplete dominance, multiple allels (Eg: ABO blood groups, Eye color in Drosophila). Sex determination XX-XY, XX-XO, ZW-ZZ, ZO-ZZ types,

Page 2 of 2

Multi- factorial inheritance (Skin colour in Man), Sex Determination in Plants and animals (Concepts of allosomes and autosomes)

3.5 Cytoplasmic Inheritance: Plastid inheritance in Mirabilis, petite characters in yeast and kappa particles in paramecium. Mitochondrial inheritance in human and poky in *Neurospora crassa*, X-linked inheritance - Hemophilia, Color blindness, X-inactivation, Y-linked inheritance.

Unit 4: Linkages, Crossing Over, mutation and Human Genetics

15 Hrs

- 4.1 Coupling and repulsion hypothesis, Linkage in maize and Drosophila, Mechanism of crossing over and its importance.
- 4.2 Gene mapping and map distance, Chromosome mapping Linkage map in maize
- 4.3 Mutation Definition, Types: spontaneous and induced, Mutagens: Physical and chemical, Mutation at the molecular level.
- 4.4 Mutations in plants, animals, and microbes for economic benefit of man, General account of structural and numerical aberrations, detection of mutations (Ame's Test)
- 4.5 Karyotype in man, inherited disorders Allosomal (Klinefelter syndrome and Turner's syndrome), Autosomal (Down syndrome and Cri-Du-Chat syndrome).

DSC A2: Practical's Based on CELL BIOLOGY AND GENETICS:

30 Hrs

- 1. Microscopic observation of cells: Simple staining
 - a. Bacteria (Bacilli/cocci)
 - b. fungi (Aspergillus/Penicillium/Rhizopus) / plant (stem/leaf) / animal Isolation and staining of liver parenchyma cell/Buccal epithelial cell
- 2. Use of Micrometer and calibration, measurement of epidermal cells
- 3. Preparation of different stages of Mitosis (onion root tips)
- 4. Preparation of different stages of Meiosis (onion flower bud)
- 5. Study of Barr bodies
- 6. Isolation of chloroplasts/mitochondria
- 7. Vital staining of mitochondria
- 8. Blood smear differential staining
- 9. Problems on co-dominance, epistasis, two point and three point test cross
- 10. Karyotype analysis Man and Onion, Man Normal and Abnormal Down and Turner's syndromes, Genetic problems

References:

1. Molecular Biology of cell – Bruce Alberts et al, Garland publications

2. Animal Cytology & Evolution - MJD, White Cambridge University Publicatins

Page 3 of 3

CHAIR MAN BOS IN BOOTECHNOLOGY TUMKUR UNIVERSITY

UMKUR-572103

- 3. Molecular Cell Biology Daniel, Scientific American Books.
- 4. Cell Biology Jack D.Bruke, The William Twilkins Company.
- 5. Principles of Gene Manipulations Old & Primrose, Black Well Scientific Publications.
- 6. Cell Biology Ambrose & DorouthyM Easty, ELBS Publications.
- 7. Fundamentals of Cytology Sharp, Mc Graw Hill Company
- 8. Cytology Wilson & Marrision, Reinform Publications
- 9. Molecular Biology Smith Faber & Faber Publications
- 10. Cell & Molecular Biology. E.D.D De Robertis & E.M.F De Robertis, Waverly publication
- 11. An introduction to Genetic Analysis by Anthony, J.F. J.A. Miller, D.T. Suzuki, R.C. Richard Lewontin, W.M-Gilbert, W.H. Freeman publication
- 12. Principles of Genetics by E.J.Gardner and D.P. Snusted. John Wiley & Sons, New York
- 13. The science of Genetics, by A.G. Atherly J.R. Girton, J.F. Mcdonald, Saundern College publication
- 14. Principles of Genetics by R.H. Tamarin McGrawhill
- 15. Theory & problems in Genetics by Stansfield, Schaum out line series McGrawhill
- 16. Molecular Cell Biology Lodish, H., Baltimore, D; fesk, A., Zipursky S.L., Matsudaride, P. and Darnel. American Scientific Books. W.H. Freeman, New York
- 17. The cell: A molecular approach. Geoffrey M Cooper, Robert E Hausman, ASM press
- 18. Cell and Molecular Biology, Concepts and Experiments Gerald Karp, John Wiley & Sons, Inc

CHAIR

BOS IN Broten

TUMKUR UNIVERSIT UMKUR-572103

TUMKUR UNIVERSITY

Curriculum for B.Sc., BIOTECHNOLOGY

Revised CBCS PATTERN

I B.Sc., II SEMESTER

DSC A3: MICROBIOLOGY

60 Hrs

Unit 1: Introduction and Scope of Microbiology

15 Hrs

- 1.1 Definition and history of microbiology, contributions of Antony van Leeuwenhoek, Louis Pasteur, Robert Koch, Alexander Fleming.
- 1.2 Importance and scope of Microbiology as a modern Science, Branches of microbiology, five kingdom and three domain classification of microorganisms.
- 1.3 Microscopy: Construction and working principles of different types of microscopes Compound, Dark field, Phase contrast, Confocal, Fluorescence and Electron Microscope (Scanning and Transmission)
- 1.4 Chromatography: Working principles, types paper and column chromatography
- 1.5 Centrifugation Working principles and its types, ultra centrifugation

Unit 2: Techniques in Microbiology

15 Hrs

- 2.1 Sterilization: Principles and Applications of Physical Methods. Autoclave, Hot air oven, laminar airflow, Seitz filter, Sintered glass filter, and membrane filter.
- 2.2 Radiation Methods: UV rays and Gamma rays.
- 2.3 Chemical Methods: Alcohol, Aldehydes, Phenols, Halogens and Gaseous agents.
- 2.4 Isolation of microorganisms, types of streaking, serial dilution, pour, spread plate and exposure plate methods.
- 2.5 Stains and Staining Techniques: Principles of staining, Types of stains simple stains, structural stains and Differential stains

Unit 3: Prokaryotic and Eukaryotic microorganisms

15 Hrs

- 3.1 Concept of microbial species and strains, classification of bacteria based on morphology (shape and flagella), nutrition, Chemotaxonomy, genetic method and extreme environment, molecular phylogeny.
- 3.2 Bacterial diseases of man –Mode of infection, multiplication, symptoms, diagnosis, treatment, preventive measures of Tetanus, Tuberculosis, Pneumonia, and Cholera.
- 3.3 Microbial Metabolism: Bacterial Photosynthesis: Photosynthetic apparatus in prokaryotes, Photophosphorylation & Dark reaction. Respiration: EMP, HMP and ED Pathways, Kreb's cycle, Oxidative Phosphorylation.

Page 5 of 5

BOS IN Biotelboology
UMKUR UNIVERSITY

'MKUR-572103

- 3.4 Salient features, Classification, Reproduction, diseases (Aspergillosis, Malaria) of Protozoa, Fungi and Algae
- 3.5 Economic importance of Protozoa, algae and fungi.

Unit 4: General Account acellular organisms

15 Hrs

- 4.1 Viruses Structure (RNA and DNA virus) and classification
- 4.2 Plant Viruses –TMV, CaMV, (classification, structure, Mode of infection, multiplication, symptoms, diagnosis, treatment, preventive measures
- 4.3 Animal viruses Hepatitis B, HIV, Bacteriophages- Lamba, T4 Phage
- 4.4 Viroid Potato spindle tuber Viroid, Prions- CJD, Kuru, BSE
- 4.5 Economic importance of viruses in genetic engineering; recombinant technology vaccine production

DSC A4: Practical's Based on MICROBIOLOGY:

30 Hrs

- 1. Study of Compound microscope, Autoclave, Incubator, Hot air oven, pH meter, Laminar Air flow, spectrophotometer/colorimeter and centrifuge.
- 2. Preparation of different types of media (Simple, complex and differential media).
- 3. Staining Techniques: Simple, Negative staining, Gram staining, Endospore staining, fungal and algal staining
- 4. Isolation of bacteria and fungi from soil, air, and water streaking, serial dilution and pourplate methods
- 5. Counting of microorganisms (bacteria/yeast) Total Count (Haemocytometer)
- 6. Antibiotic sensitivity test- Disc diffusion/Well diffusion/MIC method
- 7. Biochemical tests Starch hydrolysis, catalase, & gelatin liquefaction test
- 8. Study of Rhizobium from root nodules of legumes
- 9. VAM

REFERENCES:

- 1. Microbiology Pelezar, Chan, Krieg. Tata McGraw Hill Publications.
- 2. Microbiology concepts and application by Paul A.Ketchum, Wiley Publications
- 3. Fundaments of Microbiology-Frobisher, Sauders & toppan publications.
- 4. Microbiology Ronald M.Atlas
- 5. Introductory Biotechnology R.B. Singh C.B.D. India (1990)
- 6. Industrial Microbiology casidal E. Wiley Eastern Ltd.
- 7. Fundamentals of Bacteriology Salley
- 8. Frontiers in Microbial technology P.S.Bisen, CBS Publishers
- 9. Biotechnology: International Trends of perspectives A.T.Bull, G.Holl M.D.Lilly Oxford &

BOS IN Brotech rology

:MKUB-973103

TUMKUR UNIVERSITY B.Sc., BIOTECHNOLOGY Revised CBCS PATTERN

QUESTION PAPER PATTERN

Question Paper Pattern for Theory Examination

Time: 03hrs

Max Marks: 80M

Max Marks: 40M

I. Answer any ten of the following. 10x02=20M1 To 12

II. Answer any six of the following. 06x05=30M 1 to 8

III. Answer any three of the following. 03x10=30M 1 to 4

Question Paper Pattern for Practical Examination

Time: 03hrs

1. Minor experiment any one. 06M

1 to 4

2. Major experiment any one. 14M

1 to 4

3. Spotters 10M

A, B,C,D,E (02each-01M identification 1M comments = 02x05=10M)

4. Viva-voce 05M

5. Record/Project/Reports 05M

CHAIRMAN
BOS IN Biotecharlogy
TUMKUR UNIVERSITY
UMKUR-572103